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Abstract
I describe the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tuneable)
positive cosmological constant. It utilises a single chiral multiplet with a gauged shift symmetry, that can
be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled
to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phe-
nomenology that allows to differentiate it from other models of supersymmetry breaking and mediation
mechanisms. We also study the question if this model can lead to inflation by identifying the dilaton with
the inflaton. We find that this is possible if the Kähler potential is modified by a term that has the form of
NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar
potential, depending on two extra parameters. We then generalise this model to a general class where the
inflation is driven by supersymmetry breaking with the superpartner of the goldstino (sgoldstino) playing
the role of the inflaton. Imposing an R-symmetry allows to satisfy easily the slow-roll conditions, avoid-
ing the so-called η-problem, and leads to two different classes of small field inflation models; they are
characterised by an inflationary plateau around the maximum of the scalar potential, where R-symmetry
is either restored or spontaneously broken, with the inflaton rolling down to a minimum describing the
present phase of our Universe. The models agree with cosmological observations and predict a tensor-to-
scalar ratio of primordial perturbations 10−9 <∼ r <∼ 10−4 and an inflation scale 1010 GeV <∼ H∗ <∼ 1012

GeV.

1. INTRODUCTION
If String Theory is a fundamental theory of Nature and not just a tool for studying systems with strongly coupled dynamics, it
should be able to describe at the same time particle physics and cosmology, which are phenomena that involve very different
scales from the microscopic four-dimensional (4d) quantum gravity length of 10−33 cm to large macroscopic distances of the size
of the observable Universe ∼1028 cm spanned a region of about 60 orders of magnitude. In particular, besides the 4d Planck mass,
there are three very different scales with very different physics corresponding to the electroweak, dark energy and inflation. These
scales might be related via the scale of the underlying fundamental theory, such as string theory, or they might be independent
in the sense that their origin could be based on different and independent dynamics. An example of the former constraint and
more predictive possibility is provided by TeV strings with a fundamental scale at low energies due for instance to large extra
dimensions transverse to a four-dimensional braneworld forming our Universe [1]. In this case, the 4d Planck mass is emergent
from the fundamental string scale and inflation should also happen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that all three scales have an independent dynamical
origin. Moreover, we will assume the presence of low energy supersymmetry that allows for an elegant solution of the mass
hierarchy problem, a unification of fundamental forces as indicated by low energy data and a natural dark matter candidate due
to an unbroken R-parity. The assumption of independent scales implies that supersymmetry breaking should be realized in a
metastable de Sitter vacuum with an infinitesimally small (tunable) cosmological constant independent of the supersymmetry
breaking scale that should be in the TeV region. In a recent work [3], we studied a simple N = 1 supergravity model having this
property and motivated by string theory. Besides the gravity multiplet, the minimal field content consists of a chiral multiplet with
a shift symmetry promoted to a gauged R-symmetry using a vector multiplet. In the string theory context, the chiral multiplet can
be identified with the string dilaton (or an appropriate compactification modulus) and the shift symmetry associated to the gauge
invariance of a two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The shift symmetry fixes the form of the
superpotential and the gauging allows for the presence of a Fayet-Iliopoulos (FI) term, leading to a supergravity action with two
independent parameters that can be tuned so that the scalar potential possesses a metastable de Sitter minimum with a tiny vacuum
energy (essentially the relative strength between the F- and D-term contributions). A third parameter fixes the Vacuum Expectation
Value (VEV) of the string dilaton at the desired (phenomenologically) weak coupling regime. An important consistency constraint
of our model is anomaly cancellation which has been studied in [5] and implies the existence of additional charged fields under
the gauged R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which is manifestly anomaly free without additional
charged fields and allows to couple in a straight forward way a visible sector containing the minimal supersymmetric extension
of the Standard Model (MSSM) and studied the mediation of supersymmetry breaking and its phenomenological consequences.
It turns out that an additional ‘hidden sector’ field z is needed to be added for the matter soft scalar masses to be non-tachyonic;
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although this field participates in the supersymmetry breaking and is similar to the so-called Polonyi field, it does not modify the
main properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well as trilinear A-terms, are generated at the
tree level and are universal under the assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since matter
fields are neutral under the shift symmetry and supersymmetry breaking is driven by a combination of the U(1) D-term and the
dilaton and z-field F-term. Alternatively, a way to avoid the tachyonic scalar masses without adding the extra field z is to modify
the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use a field representation in which the gauged shift
symmetry corresponds to an ordinary U(1) and not an R-symmetry. The two representations differ by a Kähler transformation that
leaves the classical supergravity action invariant. However, at the quantum level, there is a Green-Schwarz term generated that
amounts an extra dilaton dependent contribution to the gauge kinetic terms needed to cancel the anomalies of the R-symmetry.
This creates an apparent puzzle with the gaugino masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based to the so called anomaly mediation contributions [7, 8] that explain precisely the above apparent discrepancy.
It turns out that gaugino masses are generated at the quantum level and are thus suppressed compared to the scalar masses (and
A-terms).

This model has the necessary ingredients to be obtained as a remnant of moduli stabilisation within the framework of internal
magnetic fluxes in type I string theory, turned on along the compact directions for several abelian factors of the gauge group. All
geometric moduli can in principle be fixed in a supersymmetric way, while the shift symmetry is associated to the 4d axion and its
gauging is a consequence of anomaly cancellation [9, 10].

We then make an attempt to connect the scale of inflation with the electroweak and supersymmetry breaking scales within the
same effective field theory, that at the same time allows the existence of an infinitesimally small (tuneable) positive cosmological
constant describing the present dark energy of the universe. We thus address the question whether the same scalar potential can
provide inflation with the dilaton playing also the role of the inflaton at an earlier stage of the universe evolution [11]. We show
that this is possible if one modifies the Kähler potential by a correction that plays no role around the minimum, but creates an
appropriate plateau around the maximum. In general, the Kähler potential receives perturbative and non-perturbative corrections
that vanish in the weak coupling limit. After analysing all such corrections, we find that only those that have the form of (Neveu-
Schwarz) NS5-brane instantons can lead to an inflationary period compatible with cosmological observations. The scale of inflation
turns out then to be of the order of low energy supersymmetry breaking, in the TeV region. On the other hand, the predicted tensor-
to-scalar ratio is too small to be observed.

Inflationary models [12] in supergravity1 suffer in general from several problems, such as fine-tuning to satisfy the slow-roll
conditions, large field initial conditions that break the validity of the effective field theory, and stabilisation of the (pseudo) scalar
companion of the inflaton arising from the fact that bosonic components of superfields are always even. The simplest argument
to see the fine tuning of the potential is that a canonically normalised kinetic term of a complex scalar field X corresponds to a
quadratic Kähler potential K = XX̄ that brings one unit contribution to the slow-roll parameter η = V′′/V, arising from the eK

proportionality factor in the expression of the scalar potential V. This problem can be avoided in models with no-scale structure
where cancellations arise naturally due to non-canonical kinetic terms leading to potentials with flat directions (at the classical
level). However, such models require often trans-Planckian initial conditions that invalidate the effective supergravity descrip-
tion during inflation. A concrete example where all these problems appear is the Starobinsky model of inflation [14], despite its
phenomenological success.

All three problems above are solved when the inflaton is identified with the scalar component of the goldstino superfield2, in
the presence of a gauged R-symmetry [16]. Indeed, the superpotential is in that case linear and the big contribution to η described
above cancels exactly. Since inflation arises in a plateau around the maximum of the scalar potential (hill-top) no large field initial
conditions are needed, while the pseudo-scalar companion of the inflaton is absorbed into the R-gauge field that becomes massive,
leading the inflaton as a single scalar field present in the spectrum. This model provides therefore a minimal realisation of natural
small-field inflation in supergravity, compatible with present observations, as we show below. Moreover, it allows the presence of
a realistic minimum describing our present Universe with an infinitesimal positive vacuum energy arising due to a cancellation
between an F- and D-term contributions to the scalar potential, without affecting the properties of the inflationary plateau, along
the lines of Ref. [3, 11, 4].

On general grounds, there are two classes of such models depending on whether the maximum corresponds to a point of
unbroken (case 1) or broken (case 2) R-symmetry. The latter corresponds actually to a generalisation of the model we discussed
above [11], inspired by string theory [3]. It has the same field content but in a different field basis with a chiral multiplet S ∝ ln X
playing the role of the string dilaton. Thus, S has a shift symmetry which is actually an R-symmetry gauged by a vector multiplet
and the superpotential is a single exponential. The scalar potential has a minimum with a tuneable vacuum energy and a maximum
that can produce inflation when appropriate corrections are included in the Kähler potential. In these coordinates R-symmetry is
restored at infinity, corresponding to the weak coupling limit. Small field inflation is again guaranteed consistently with the validity
of the effective field theory.

1For reviews on supersymmetric models of inflation, see for example [13].
2See [15] for earlier work relating supersymmetry and inflation.
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2. CONVENTIONS
Throughout this paper we use the conventions of [17]. A supergravity theory is specified (up to Chern-Simons terms) by a Kähler
potential K, a superpotential W, and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enumerated by the index α
and the indices A, B indicate the different gauge groups. Classically, a supergravity theory is invariant under Kähler tranformations,
viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W(z) −→ e−κ2 J(z)W(z), (1)

where κ is the inverse of the reduced Planck mass, mp = κ−1 = 2.4× 1015 TeV. The gauge transformations of chiral multiplet scalars
are given by holomorphic Killing vectors, i.e. δzα = θAkα

A(z), where θA is the gauge parameter of the gauge group A. The Kähler
potential and superpotential need not be invariant under this gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (2)

provided that the gauge transformation of the superpotential satisfies δW = −θAκ2rA(z)W. One then has from δW = Wαδzα

Wαkα
A = −κ2rAW, (3)

where Wα = ∂αW and α labels the chiral multiplets. The supergravity theory can then be described by a gauge invariant function

G = κ2K+ log(κ6WW̄). (4)

The scalar potential is given by

V = VF + VD

VF = eκ2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1
2
(Re f )−1 AB PAPB, (5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (6)

The moment maps PA are given by
PA = i(kα

A∂αK− rA). (7)

In this paper we will be concerned with theories having a gauged R-symmetry, for which rA(z) is given by an imaginary constant
rA(z) = iκ−2ξ. In this case, κ−2ξ is a Fayet-Iliopoulos [18] constant parameter.

3. THE MODEL
The starting point is a chiral multiplet S and a vector multiplet associated with a shift symmetry of the scalar component s of the
chiral multiplet S

δs = −icθ , (1)

and a string-inspired Kähler potential of the form −p log(s + s̄). The most general superpotential is either a constant W = κ−3a or
an exponential superpotential W = κ−3aebs (where a and b are constants). A constant superpotential is (obviously) invariant under
the shift symmetry, while an exponential superpotential transforms as W → We−ibcθ , as in eq. (3). In this case the shift symmetry
becomes a gauged R-symmetry and the scalar potential contains a Fayet-Iliopoulos term. Note however that by performing a
Kähler transformation (1) with J = κ−2bs, the model can be recast into a constant superpotential at the cost of introducing a linear
term in the Kähler potential δK = b(s + s̄). Even though in this representation, the shift symmetry is not an R-symmetry, we will
still refer to it as U(1)R. The most general gauge kinetic function has a constant term and a term linear in s, f (s) = δ + βs.

To summarise,3

K(s, s̄) = −p log(s + s̄) + b(s + s̄),
W(s) = a,

f (s) = δ + βs , (2)

3In superfields the shift symmetry (1) is given by δS = −icΛ, where Λ is the superfield generalization of the gauge parameter. The gauge invariant Kähler potential
is then given by K(S, S̄) = −pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the gauge superfield of the shift symmetry.
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where we have set the mass units κ = 1. The constants a and b together with the constant c in eq. (1) can be tuned to allow for an
infinitesimally small cosmological constant and a TeV gravitino mass. For b > 0, there always exists a supersymmetric AdS (anti-de
Sitter) vacuum at 〈s + s̄〉 = b/p, while for b = 0 (and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a compactification modulus or the universal dilaton and (for
negative b) the exponential superpotential may be generated by non-perturbative effects.

The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1
p
(pl − b)2 − 3l2

}
l = 1/(s + s̄)

VD = c2 l
β + 2δl

(pl − b)2 (3)

In the case where S is the string dilaton, VD can be identified as the contribution of a magnetized D-brane, while VF for b = 0 and
p = 2 coincides with the tree-level dilaton potential obtained by considering string theory away its critical dimension [19]. For
p ≥ 3 the scalar potential V is positive and monotonically decreasing, while for p < 3, its F-term part VF is unbounded from below
when s + s̄ → 0. On the other hand, the D-term part of the scalar potential VD is positive and diverges when s + s̄ → 0 and for
various values for the parameters an (infinitesimally small) positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts p = 2 or p = 1 when f (s) = s, or p = 1 when the
gauge kinetic function is constant. For p = 2 and f (s) = s, the minimization of V yields:

b/l = −ρ0 ≈ −0.183268 , p = 2 (4)

a2

bc2 = A2(−ρ0) + B2(−ρ0)
Λ

b3c2 ≈ −50.6602 +O(Λ), (5)

where Λ is the value of V at the minimum (i.e. the cosmological constant), −ρ0 is the negative root of the polynomial −x5 + 7x4 −
10x3 − 22x2 + 40x + 8 compatible with (5) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e−α −4 + 4α− α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α− 2
(6)

It follows that by carefully tuning a and c, Λ can be made positive and arbitrarily small independently of the supersymmetry
breaking scale. A plot of the scalar potential for certain values of the parameters is shown in figure 1.

FIGURE 1: A plot of the scalar potential for p = 2, b = −1, δ = 0, β = 1 and a given by equation (5) for c = 1 (black curve) and
c = 0.7 (red curve).
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At the minimum of the scalar potential, for nonzero a and b < 0, supersymmetry is broken by expectation values of both an F
and D-term. Indeed the F-term and D-term contributions to the scalar potential are

VF|s+s̄= −ρ0
b

=
1
2

a2b2e−ρ0

(
1 +

2
ρ0

)2
> 0,

VD|s+s̄= −ρ0
b

= − b3c2

ρ0

(
1 +

2
ρ0

)2
> 0 . (7)

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

ρ2
0

e−ρ0 . (8)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by the gauge field, which acquires a mass. On
the other hand, the Goldstino, which is a linear combination of the fermion of the chiral multiplet χ and the gaugino λ gets eaten
by the gravitino. As a result, the physical spectrum of the theory consists (besides the graviton) of a massive scalar, namely the
dilaton, a Majorana fermion, a massive gauge field and a massive gravitino. All the masses are of the same order of magnitude as
the gravitino mass, proportional to the same constant a (or c related by eq. (5) where b is fixed by eq. (4)), which is a free parameter
of the model. Thus, they vanish in the same way in the supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric ground state at infinity in the s-field space (zero
coupling). It turns out however that it is extremely long lived for realistic perturbative values of the gauge coupling l ' 0.02 and
TeV gravitino mass and, thus, practically stable; its decay rate is [5]:

Γ ∼ e−B with B ≈ 10300 . (9)

4. COUPLING A VISIBLE SECTOR
The guideline to construct a realistic model keeping the properties of the toy model described above is to assume that matter fields
are invariant under the shift symmetry (1) and do not participate in the supersymmetry breaking. In the simplest case of a canonical
Kähler potential, MSSM-like fields φ can then be added as:

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) + ∑ ϕϕ̄,

W = κ−3a + WMSSM, (1)

where WMSSM(φ) is the usual MSSM superpotential. The squared soft scalar masses of such a model can be shown to be positive
and close to the square of the gravitino mass (TeV2). On the other hand, for a gauge kinetic function with a linear term in s, β 6= 0
in eq. (2), the Lagrangian is not invariant under the shift symmetry

δL = −θ
βc
8

εµνρσFµνFρσ. (2)

and its variation should be canceled. As explained in Ref. [5], in the ’frame’ with an exponential superpotential the R-charges of
the fermions in the model can give an anomalous contribution to the Lagrangian. In this case the ‘Green-Schwarz’ term ImsFF̃ can
cancel quantum anomalies. However as shown in [5], with the minimal MSSM spectrum, the presence of this term requires the
existence of additional fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a constant gauge kinetic function. In this case the only
(integer) possibility4 is p = 1. The scalar potential is given by (3) with β = 0, δ = p = 1. The minimization yields to equations
similar to (4), (5) and (6) with a different value of ρ0 and functions A1 and B1 given by:

b〈s + s̄〉 = −ρ0 ≈ −0.233153

bc2

a2 = A1(−ρ0) + B1(−ρ0)
Λ

a2b
≈ −0.359291 +O(Λ) (3)

A1(α) = 2eαα
3− (α− 1)2

(α− 1)2 , B1(α) =
2α2

(α− 1)2 ,

where −ρ0 is the negative root of −3 + (ρ− 1)2(2− ρ2/2) = 0 close to −0.23, compatible with the second constraint for Λ = 0.
However, this model suffers from tachyonic soft masses when it is coupled to the MSSM, as in (1). To circumvent this problem,
one can add an extra hidden sector field which contributes to (F-term) supersymmetry breaking. Alternatively, the problem of

4If f (s) is constant, the leading contribution to VD when s + s̄ → 0 is proportional to 1/(s + s̄)2, while the leading contribution to VF is proportional to 1/(s + s̄)p . It
follows that p < 2; if p > 2, the potential is unbounded from below, while if p = 2, the potential is either positive and monotonically decreasing or unbounded from
below when s + s̄→ 0 depending on the values of the parameters.
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tachyonic soft masses can also be solved if one allows for a non-canonical Kähler potential in the visible sector, which gives an
additional contribution to the masses through the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to the so-called Polonyi field [20]). The Kähler potential,
superpotential and gauge kinetic function are given by

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) + zz̄ + ∑ ϕϕ̄ ,

W = κ−3a(1 + γκz) + WMSSM(ϕ) ,

f (s) = 1 , fA = 1/g2
A , (4)

where A labels the Standard Model gauge group factors and γ is an additional constant parameter. The existence of a tuneable dS
vacuum with supersymmetry breaking and non-tachyonic scalar masses implies that γ must be in a narrow region:

0.5 <∼ γ <∼ 1.7 . (5)

In the above range of γ the main properties of the toy model described in the previous section remain, while Rez and its F-auxiliary
component acquire non vanishing VEVs. All MSSM soft scalar masses are then equal to a universal value m0 of the order of the
gravitino mass, while the B0 Higgs mixing parameter is also of the same order:

m2
0 = m2

3/2

[
(σs + 1) +

(γ + t + γt)2

(1 + γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ + t + γt2)

1 + γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ + t + γt2)

(1 + γt)

]
, (6)

where σs = −3 + (ρ + 1)2 with ρ = −b(s + s̄) and t ≡ 〈Re z〉 determined by the minimization conditions as functions of γ. Also,
A0 is the soft trilinear scalar coupling in the standard notation, satisfying the relation [21]

A0 = B0 + m3/2 . (7)

On the other hand, the gaugino masses appear to vanish at tree-level since the gauge kinetic functions are constants (see (10)).
However, as mentioned in Section 3, this model is classically equivalent to the theory5

K = −κ−2 log(s + s̄) + zz̄ + ∑
ϕ

ϕϕ̄,

W =
(

κ−3a(1 + z) + WMSSM(ϕ)
)

ebs , (8)

obtained by applying a Kähler transformation (1) with J = −κ−2bs. All classical results remain the same, such as the expressions
for the scalar potential and the soft scalar masses (6), but now the shift symmetry (1) of s became a gauged R-symmetry since the
superpotential transforms as W −→We−ibcθ . Therefore, all fermions (including the gauginos and the gravitino) transform6 as well
under this U(1)R, leading to cubic U(1)3

R and mixed U(1)× GMSSM anomalies. These anomalies are cancelled by a Green-Schwarz
(GS) counter term that arises from a quantum correction to the gauge kinetic functions:

fA(s) = 1/g2
A + βAs with βA =

b
8π2

(
TRA − TGA

)
, (9)

where TG is the Dynkin index of the adjoint representation, normalized to N for SU(N), and TR is the Dynkin index associated with
the representation R of dimension dR, equal to 1/2 for the SU(N) fundamental. An implicit sum over all matter representations is
understood. It follows that gaugino masses are non-vanishing in this representation, creating a puzzle on the quantum equivalence
of the two classically equivalent representations. The answer to this puzzle is based on the fact that gaugino masses are present in
both representations and are generated at one-loop level by an effect called Anomaly Mediation [7, 8]. Indeed, it has been argued
that gaugino masses receive a one-loop contribution due to the super-Weyl-Kähler and sigma-model anomalies, given by [8]:

M1/2 = − g2

16π2 [(3TG − TR)m3/2 + (TG − TR)KαFα+

+2
TR
dR

(log detK|R ′′),αFα

]
. (10)

5This statement is only true for supergravity theories with a non-vanishing superpotential where everything can be defined in terms of a gauge invariant function
G = κ2K+ log(κ6WW̄) [22].

6The chiral fermions, the gauginos and the gravitino carry a charge bc/2, −bc/2 and −bc/2 respectively.
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The expectation value of the auxiliary field Fα, evaluated in the Einstein frame is given by

Fα = −eκ2K/2gαβ̄∇̄β̄W̄. (11)

Clearly, for the Kähler potential (10) or (8) the last term in eq. (10) vanishes. However, the second term survives due to the presence
of Planck scale VEVs for the hidden sector fields s and z. Since the Kähler potential between the two representations differs by a
linear term b(s + s̄), the contribution of the second term in eq. (10) differs by a factor

δmA =
g2

A
16π2 (TG − TR)beκ2K/2gαβ̄∇̄β̄W̄, (12)

which exactly coincides with the ‘direct’ contribution to the gaugino masses due to the field dependent gauge kinetic function (9)
(taking into account a rescaling proportional to g2

A due to the non-canonical kinetic terms).
We conclude that even though the models (10) and (8) differ by a (classical) Kähler transformation, they generate the same

gaugino masses at one-loop. While the one-loop gaugino masses for the model (10) are generated entirely by eq. (10), the gaugino
masses for the model (8) after a Kähler transformation have a contribution from eq. (10) as well as from a field dependent gauge
kinetic term whose presence is necessary to cancel the mixed U(1)R × G anomalies due to the fact that the extra U(1) has become
an R-symmetry giving an R-charge to all fermions in the theory. Using (10), one finds:

M1/2 = − g2

16π2 m3/2 [(3TG − TR)− (TG − TR)×

×
(
(ρ + 1)2 + t

γ + t + γt2

1 + γt

)]
. (13)

For U(1)Y we have TG = 0 and TR = 11, for SU(2) we have TG = 2 and TR = 7, and for SU(3) we have TG = 3 and TR = 6, such
that for the different gaugino masses this gives (in a self-explanatory notation):

M1 = 11
g2

Y
16π2 m3/2

[
1− (ρ + 1)2 − t(γ + t + γt)

1 + γt

]
,

M2 =
g2

2
16π2 m3/2

[
1− 5(ρ + 1)2 − 5

t(γ + t + γt2)

1 + γt

]
,

M3 = −3
g2

3
16π2 m3/2

[
1 + (ρ + 1)2 +

t(γ + t + γt2)

1 + γt

]
. (14)

5. PHENOMENOLOGY
The results for the soft terms calculated in the previous section, evaluated for different values of the parameter γ are summarised
in Table 1. For every γ, the corresponding t and ρ are calculated by imposing a vanishing cosmological constant at the minimum
of the potential. The scalar soft masses and trilinear terms are then evaluated by eqs. (6) and the gaugino masses by eqs. (14). Note
that the relation (7) is valid for all γ. We therefore do not list the parameter B0.

γ t ρ m0 A0 M1 M2 M3 tan β tan β
µ>0 µ<0

0.6 0.45 0.18 0.48 1.79 0.017 0.026 0.027
1 0.41 0.13 0.72 1.72 0.015 0.025 0.026
1.1 0.39 0.12 0.77 1.70 0.015 0.024 0.026 46 29
1.4 0.39 0.07 0.91 1.65 0.014 0.023 0.026 40 23
1.7 0.41 0.002 0.99 1.59 0.013 0.022 0.025 36 19

TABLE 1: The soft terms (in terms of m3/2) for various values of
γ. If a solution to the RGE exists, the value of tan β is shown in
the last columns for µ > 0 and µ < 0.

In most phenomenological studies, B0 is substituted for tan β, the ratio between the two Higgs VEVs, as an input parameter for
the renormalization group equations (RGE) that determine the low energy spectrum of the theory. Since B0 is not a free parameter
in our theory, but is fixed by eq. (7), this corresponds to a definite value of tan β. For more details see [23] (and references therein).
The corresponding tan β for a few particular choices for γ are listed in the last two columns of table 1 for µ > 0 and µ < 0
respectively. No solutions were found for γ <∼ 1.1, for both signs of µ. The lighest supersymmetric particle (LSP) is given by the
lightest neutralino and since M1 < M2 (see table 1) the lightest neutralino is mostly Bino-like, in contrast with a typical mAMSB
(minimal anomaly mediation supersymmetry breaking) scenario, where the lightest neutralino is mostly Wino-like [24].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in Figure 2 as a function of the gravitino mass for
γ = 1.1 and µ > 0 (for µ < 0 the bound is higher). The experimental limit on the gluino mass forces m3/2 >∼ 15 TeV. In this
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FIGURE 2: The masses of the sbottom (yellow), stop (black), gluino (red), lightest chargino (green) and lightest neutralino (blue)
as a function of m3/2 for γ = 1.1 and for µ > 0. No solutions to the RGE were found when m3/2 >∼ 45 TeV. The lower bound
corresponds to a gluino mass of 1 TeV.

limit the stop mass can be as low as 2 TeV. To conclude, the lower end mass spectrum consists of (very) light charginos (with a
lightest chargino between 250 and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP (80 − 230 GeV), which
would distinguish this model from the mAMSB where the LSP is mostly Wino-like. These upper limits on the LSP and the lightest
chargino imply that this model could in principle be excluded in the next LHC run. In order for the gluino to escape experimental
bounds, the lower limit on the gravitino mass is about 15 TeV. The gluino mass is then between 1-3 TeV. This however forces the
squark masses to be very high (10− 35 TeV), with the exception of the stop mass which can be relatively light (2− 15 TeV).

6. NON-CANONICAL KÄHLER POTENTIAL FOR THE VISIBLE SECTOR
As mentioned already in Section 4, an alternative way to avoid tachyonic soft scalar masses for the MSSM fields in the model (1),
instead of adding the extra Palonyi-type field z in the hidden sector, is by introducing non-canonical kinetic terms for the MSSM
fields, such as:

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) + (s + s̄)−ν ∑ ϕϕ̄,

W = κ−3a + WMSSM,

f (s) = 1, fA(s) = 1/g2
A , (1)

where ν is an additional parameter of the theory, with ν = 1 corresponding to the leading term in the Taylor expansion of− log(s+
s̄− ϕϕ̄). Since the visible sector fields appear only in the combination ϕϕ̄, their VEVs vanish provided that the scalar soft masses
squared are positive. Moreover, for vanishing visible sector VEVs, the scalar potential and is minimization remains the same as
in eqs. (refbsalpha). Therefore, the non-canonical Kähler potential does not change the fact that the F-term contribution to the soft
scalar masses squared is negative. On the other hand, the visible fields enter in the D-term scalar potential through the derivative
of the Kähler potential with respect to s. Even though this has no effect on the ground state of the potential, the ϕ-dependence of
the D-term scalar potential does result in an extra contribution to the scalar masses squared which become positive

ν > − eα(σs + 1)α
A(α)(1− α)

≈ 2.6 . (2)

The soft MSSM scalar masses and trilinear couplings in this model are:

m2
0 = κ2a2

(
b
α

)(
eα(σs + 1) + ν

A(α)

α
(1− α)

)
A0 = m3/2(s + s̄)ν/2 (σs + 3) (3)

B0 = m3/2(s + s̄)ν/2 (σs + 2)

8
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where σs is defined as in (6), eq. (4) has been used to relate the constants a and c, and corrections due to a small cosmological
constant have been neglected. A field redefinition due to a non-canonical kinetic term gϕϕ̄ = (s + s̄)−ν is also taken into account.
The main phenomenological properties of this model are not expected to be different from the one we analyzed in section 5 with
the parameter ν replacing γ. Gaugino masses are still generated at one-loop level while mSUGRA applies to the soft scalar sector.
We therefore do not repeat the phenomenological analysis for this model.

7. IDENTIFYING THE DILATON WITH THE INFLATON
In the following, we study the possibility to identify the dilaton with the inflaton. We will show first that the above model does not
allow slow roll inflation.

Indeed, the kinetic terms in the model (2-3) for the scalar φ ≡ s + s̄ = 1/l are given by

Ls/e = −gss̄∂µs∂µ s̄ = − pκ−2

4
1

φ2 ∂µφ∂µφ. (1)

The canonically normalised field χ therefore satisfies χ = κ−1
√

p
2 log φ, where we re-introduce the gravitational coupling κ.

The slow roll parameters are given by

ε =
1

2κ2

(
dV/dχ

V

)2
=

1
2κ2

[
1
V

dV
dφ

(
dχ

dφ

)−1
]2

,

η =
1
κ2

V′′(χ)
V

=
1
κ2

1
V

[
d2V
dφ2

(
dχ

dφ

)−2
− dV

dφ

d2χ

dφ2

(
dχ

dφ

)−3
]

(2)

It can be shown that, when the conditions (4) and (5) are satisfied, the slow roll parameters and the potential depend only on
ρ = −bφ; indeed

κ4V(ρ)

b3c2 =
e−ρ

(
A2(α)ρ

(
ρ2 + 4ρ− 2

)
− 2eρ(ρ + 2)2)

2ρ3 , (3)

where A2(α) ≈ −50.66 as in eq. (5). In Fig. 3, a plot is shown of κ4V(ρ)
|b|3c2 as a function of ρ. The minimum of the potential is at

ρmin ≈ 0.1832 (see eq. (4)), while the potential has a local maximum at ρmax ≈ 0.4551. A plot of the slow roll parameter η (also in
Fig. 3) shows that |η| � 1 is not satisfied. This result holds for any parameters a, b, c satisfying eqs. (4) and (5). A similar analysis

FIGURE 3: A plot of − κ4V(ρ)
b3c2 as a function of ρ = −bφ (left), and a plot of the slow roll parameter η as a function of ρ (right). The

slow roll condition |η| � 1 is not satisfied for any value of the parameters a, b, c.

to the one above can be performed for p = 1, showing that the slow roll condition η � 1 can not be satisfied.

8. EXTENSIONS OF THE MODEL THAT SATISFY THE SLOW ROLL CONDITIONS
In the previous section we showed that the slow roll conditions can not be satisfied in the minimal versions of the model. In this
section we modify the above model by modifying the Kähler potential. While the superpotential is uniquely fixed (up to a Kähler
transformation), the Kähler potential admits corrections that can always be put in the form

K = −pκ−2 log
(

s + s̄ +
ξ

b
F(s + s̄)

)
+ κ−2b(s + s̄), (1)

9
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while the superpotential, the gauge kinetic function and moment map are given by

W = κ−3a,

f (s) = δ + βs,

P = κ−2c

(
b− p

1 + ξ
b Fs

s + s̄ + ξ
b F

)
, (2)

where P is the U(1) moment map (7) and Fs = ∂sF(s + s̄). The scalar potential is given by (φ = s + s̄)

V = VF + VD,

VF = κ−4 |a|2ebφ

(φ + ξ
b F)p

[
−3− 1

p

(
b (bφ + ξF)− p(b + ξFφ)

)2

ξFφφ(bφ + ξF)− (b + ξFφ)2

]
,

VD = κ−4 b2c2

2δ + βφ

[
1− p

1 + ξ
b Fφ

bφ + ξF

]2

. (3)

As was discussed above, we take δ = 1, β = 0 for p = 1 and δ = 0, β = 1 for p = 2.
Identifying Re(s) with the inverse string coupling, the function F may contain perturbative contributions that can be expressed

as power series of 1/(s + s̄), as well as non-perturbative corrections which are exponentially suppressed in the weak coupling
limit. The later can be either of the form e−λ(s+s̄) for λ > 0 in the case of D-brane instantons, or of the form e−λ(s+s̄)2

in the case
of (Neveu-Schwarz) NS5-brane instantons (since the closed string coupling is the square of the open string coupling). We have
considered a generic contribution of these three different types of corrections and we found that only the last type of contributions
can lead to an inflationary plateau providing sufficient inflation. The other corrections can be present but do not modify the main
properties of the model (as long as weak coupling description holds). In the following section, we analyse in detailed a function F
describing a generic NS5-brane instanton correction to the Kähler potential.

9. SLOW-ROLL INFLATION
9.1. p=2 case
We now consider the case with

F(φ) = exp(αb2φ2), (1)

where b < 0 and α < 0 . F(φ) vanishes asymptotically at large φ. In this case, we obtain

VD =
κ−4b3c2

bφ

[
bφ− 2 + ξeαb2φ2

(1− 4αbφ)

bφ + ξeαb2φ2

]2

, (2)

and

VF = − κ−4|a|2b2ebφ

2
(

ξeαb2φ2
+ bφ

)2


(

bφ + ξeαb2φ2
(1− 4αbφ)− 2

)2

2αξeαb2φ2
(

2αb3φ3 + ξeαb2φ2 − bφ
)
− 1

+ 6

 . (3)

There are four parameters in this model namely α, ξ, b and c. The first two parameters α and ξ control the shape of the potential.
There are some regions in the parameter space of α and ξ that the potential satisfies the slow-roll conditions i.e. ε� 1 and |η| � 1.
In order to obtain the potential with flat plateau shape which is suitable for inflation and in agreement with Planck ’15 data, we
choose

α ' −4.84 and ξ ' 0.025 (4)

Note that in the case of ξ = 0 and b < 0, we can find the Minkowski minimum by solving the equations V(φmin) = 0 and
dV(φmin)/dφ = 0, where φmin = smin + s̄min is the value of φ at the minimum of the potential. In the case of ξ 6= 0, we can not solve
the equations analytically and the relations (4), (5) are not valid. We can always assume that they are modified into

bφmin = −ρ(ξ, α) and
a2

bc2 = −50.66× λ(ξ, α, Λ)2, (5)

where λ takes positive values and satisfies |λ− 1| � 1. For any given value of parameters ξ, α and the cosmological constant Λ, one
can numerically fix the value of ρ and λ. By fine-tuning the cosmological constant Λ to be very close to zero, we can numerically
solve the equations V = 0 and dV/dφ = 0 for the value of ρ and λ in (5) as:

ρ ≈ 0.18, (6)

λ ≈ 1.017 (7)
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From eq. (5), we can see that the third parameter, b, controls the vacuum expectation value φmin. This can be shown in Fig. 4 where
we compare the scalar potential for different values of b. Motivated by string theory, we have the identification φ ∼ 1/gs . We can
choose the value of the parameter b such that φmin is of the order of 10 to make sure that we are in the perturbative regime in gs.
The last parameter, c, controls the overall scale of the potential but does not change its minimum and its shape. In the following,
we will fix b and c by using the cosmological data.

FIGURE 4: A plot of the scalar potential for p = 2, with b = −0.020, b = −0.015 and b = −0.012. Note that we choose the parameters
α and ξ as in eq. (4) with c = 0.06.

In order to compare the predictions of our models with Planck ’15 data, we choose the following boundary conditions:

φint = 27.32 φend = 22.68 (8)

The initial conditions are chosen very near the maximum on the (left) side, so that the field rolls down towards the electroweak
minimum. Any initial condition on the right of the maximum may produce also inflation, but the field will roll towards the SUSY
vacuum at infinity. The results are therefore very sensitive to the initial conditions (8) of the inflaton field.

The slow roll parameters are given as in equation (2). The total number of e-folds N can be determined by

N = κ2
∫ χint

χend

V
∂χV

dχ = κ2
∫ φint

φend

V
∂φV

(
dχ

dφ

)2
dφ. (9)

Note that we choose |η(χend)| = 1. We can compare the theoretical predictions of our model to the experimental results via the
power spectrum of scalar perturbations of the CMB, namely the amplitude As and tilt ns, and the relative strength of tensor
perturbations, i.e. the tensor-to-scalar ratio r. In terms of slow roll parameters, these are given by

As =
κ4V∗

24π2ε∗
, (10)

ns = 1 + 2η∗ − 6ε∗, (11)

r = 16ε∗, (12)

where all parameters are evaluated at the field value χint.
In order to satisfy Planck ’15 data, we choose the parameters b = −0.0182, c = 0.61 × 10−13. The value of the slow-roll

parameters at the beginning of inflation are

ε(φint) ' 1.86× 10−24 and η(φint) ' −1.74× 10−2. (13)
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The total number of e-folds N, the scalar power spectrum amplitude As, the spectral index of curvature perturbation ns and the
tensor-to-scalar ratio r are calculated and summarised in Table 2, in agreement with Planck ’15 data [25]. Fig. 5 shows that our
predictions for ns and r are within 1σ C.L. of Planck ’15 contours with the total number of e-folds N ≈ 1075. Note that N is the total
number of e-folds from φint to φend. However the number of e-folds associated with the CMB observation corresponds to a period
between the time of horizon crossing and the end of inflation, which is much smaller than 1075. According to general formula in
[25], the number of e-folds between the horizon crossing and the end of inflation is roughly estimated to be around 50-60.

ns r As
0.965 2.969× 10−23 2.259× 10−9

TABLE 2: The theoretical predictions for p =
2, with b = −0.0182, c = 0.61× 10−13, and α,
ξ given in eq. (4).

We would like to remark that the parameter c also controls the gravitino mass at the minimum of the potential around O(10)
TeV. Indeed, the gravitino mass is written as

m3/2 = κ2eκ2K/2W =
1
κ

(
abebφ/2

bφ + ξF(φ)

)
. (14)

For b = −0.0182, we get φmin ≈ 9.91134 and the gravitino mass at the minimum of the potential

〈m3/2〉 ≈ 14.98 TeV. (15)

The Hubble parameter during inflation (evaluated at φ∗ = φint) is

H∗ = κ
√

V∗/3 = 1.38 TeV. (16)

This shows that our predicted scale for inflation is of the order of TeV. The mass of gravitino during the inflation m∗3/2 = 4.15 TeV
is higher than the inflation scale, and the gauge boson mass is M∗Aµ

= 3.12 TeV.7 In fact, the gauge boson acquires a mass due to a
Stueckelberg mechanism by eating the imaginary component of s, where its mass at the minimum of the potential is given by

〈MAµ
〉 = 15.48TeV. (17)

As a result, the model essentially contains only one scalar field Re(s), which is the inflaton. This is in contrast with other super-
symmetric models of inflation, which usually contain at least two real scalars [26].8

9.2. p=1 case
In this case, we obtain

VD =
κ−4b2c2

2

[
bφ− 1 + ξeαb2φ2

(1− 2αbφ)

bφ + ξeαb2φ2

]2

, (18)

and

VF=−
κ−4|a|2bebφ

ξeαb2φ2
+ bφ


(

bφ + ξeαb2φ2
(1− 2αbφ)− 1

)2

2αξeαb2φ2
(

2αb3φ3 + ξeαb2φ2 − bφ
)
− 1

+3

 (19)

The potential has similar properties with the p = 2 case although it may give different phenomenological results at low energy.
Similar to the previous case, the relations (4) are not valid when ξ 6= 0 and we assume that they are modified into

bφmin = −ρ(ξ, α) and
bc2

a2 ' −0.359× λ(ξ, α, Λ)−2. (20)

By choosing α = −0.781 and ξ = 0.3023 and tuning the cosmological constant Λ to be very close to zero, we can numerically fix
ρ ≈ 0.56 and λ ≈ 1.29 for this case. The gravitino mass for p = 1 case can be written as

m3/2 = κ2eκ2K/2W =
1
κ

(
a
√

bebφ/2√
bφ + ξF(φ)

)
. (21)

7The gauge boson mass is given by mAµ =
√

2gss̄c2/Re(s).
8This is because a chiral multiplet contains a complex scalar.

12



Andromeda Proceedings BSM 2017, Hurgada, Egypt

FIGURE 5: We plot the theoretical predictions for the case p = 2, shown in Table 2, in the ns - r plane together with the Planck ’15
results for TT, TE, EE, + lowP and assuming ΛCDM + r.

ns r As
0.959 4.143× 10−22 2.205× 10−9

TABLE 3: The theoretical predictions for p =
1 with b = −0.0234, c = 1 × 10−13, α =
−0.781 and ξ = 0.3023.

By choosing the parameters b = −0.0234, c = 1× 10−13, the gravitino mass at the minimum of the potential is

〈m3/2〉 = 18.36 TeV. (22)

with φmin ≈ 21.53, and
〈MAµ

〉 = 36.18 TeV. (23)

By choosing appropriate boundary conditions, we find

φint = 64.53 and φend = 50.99 (24)

As summarised in Table 3, the predictions for the p = 1 case are similar to those of p = 2, in agreement with Planck ’15 data with
the total number of e-folds N ≈ 888. In this case, the Hubble parameter during inflation is

H∗ = κ
√

V∗/3 = 5.09 TeV. (25)

Note that for the p = 1 case, the mass of the gauge boson is M∗Aµ
= 6.78 TeV, and the mass of the gravitino during inflation is

m∗3/2 = 4.72 TeV.

9.3. SUGRA spectrum
The above model can be coupled to MSSM, as described in section 4:

K = K(s + s̄) + ∑ ϕϕ̄,

W = Wh(s) + WMSSM . (26)
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The soft supersymmetry breaking terms can then be calculated as follows

m2
0 = eκ2K

(
−2κ4Wh(s)W̄h(s) + κ2gss̄ |∇sWh|2

)
,

A0 = κ2eκ2K/2gss̄Ks

(
W̄s̄ + κ2KsW̄

)
,

B0 = κ2eκ2K/2
(

gss̄Ks

(
W̄s̄ + κ2KsW̄

)
− W̄

)
. (27)

For p = 2 the Lagrangian contains a Green-Schwarz term eq. (2), and the theory is not gauge invariant (without the inclusion
of extra fields that are charged under the U(1)). We therefore focus on p = 1. The soft terms can be written in terms of the gravitino
mass (see eq. (14))

m2
0 = m2

3/2 [−2 + C] ,

A0 = m3/2 C,

B0 = A0 −m3/2, (28)

where

C = −

(
−ξeαb2φ2

+ bφ
(

4αξeαb2φ2 − 1
)
+ 2
)2

4αξ2e2αb2φ2 − 4αbξφeαb2φ2
+ 8α2b3ξφ3eαb2φ2 − 2

∣∣∣∣∣∣∣
φ=φmin

. (29)

Using the parameters presented in section 9.2, we find m3/2 = 18.36 TeV and C = 1.53. For ξ = 0 the model reduces to the
one analysed in section 4, where one has C = 1.52 and m3/2 = 17.27 TeV (with φmin = 9.96). Moreover, the scalar soft mass is
tachyonic. This can be solved either by introducing an extra Polonyi-like field, or by allowing a non-canonical Kähler potential for
the MSSM-like fields ϕ. The resulting low energy spectrum is expected to be similar to the one described in sections 4 and 5. We do
not perform this analysis, but only summarise the results.

Since the tree-level contribution to the gaugino masses vanishes, their mass is generated at one-loop by the so-called ‘Anomaly
Mediation’ contribution (10). As a result, the spectrum consists of very light neutralinos (O(102) GeV), of which the lightest (a
mostly Bino-like neutralino) is the LSP dark matter candidate, slightly heavier charginos and a gluino in the 1− 3 TeV range. The
squarks are of the order of the gravitino mass (∼ 10 TeV), with the exception of the stop squark which can be as light as 2 TeV.

10. SYMMETRIC VERSUS NON-SYMMETRIC POINT
Here, we generalise the above model of inflation and we are interested in supergravity theories containing a single chiral multiplet
transforming under a gauged R-symmetry with a corresponding abelian vector multiplet [16]. We assume that the chiral multiplet
X (with scalar component X) transforms as:

X −→ Xe−iqω . (1)

where q is its charge, and ω is the gauge parameter.
The Kähler potential is therefore a function of XX̄, while the superpotential is constrained to be of the form Xb:

K = K(XX̄),

W = κ−3 f Xb, (2)

where X is a dimensionless field and κ−1 = mp = 2.4× 1015 TeV is the (reduced) Planck mass. For b 6= 0, the gauge symmetry eq. 1
becomes a gauged R-symmetry. The gauge kinetic function can have a constant contribution as well as a contribution proportional
to ln X

f (X) = γ + β ln X. (3)

The latter contribution proportional to β is not gauge invariant and can be used as a Green-Schwarz counter term to cancel possible
anomalies. One can show however that the constant β is fixed to be very small by anomaly cancellation conditions and does not
change our results [16]. We will therefore omit this term in our analysis below.

We are interested in the general properties of supergravity theories of inflation that are of the above form. Before performing
our analysis, a distinction should be made concerning the initial point where slow-roll inflation starts. The inflaton field (which
will turn out to be ρ, where X = ρeiθ) can either have its initial value close to the symmetric point where X = 0, or at a generic
point X 6= 0. The minimum of the potential, however, is always at a nonzero point X 6= 0. This is because at X = 0 the negative
contribution to the scalar potential vanishes and no cancellation between F-term and D-term is possible. The supersymmetry
breaking scale is therefore related to the cosmological constant as κ−2m2

3/2 ≈ Λ. One could in principle assume that the value of
the potential at its minimum is of the order of the supersymmetry breaking scale. However, in this case additional corrections are
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needed to bring down the minimum of the potential to the present value of the cosmological constant, and we therefore do not
discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton field will roll towards a minimum of the potential at X 6= 0. On the
other hand, in the second case inflation will start at a generic point X 6= 0. In order to make easier contact with the model discussed
in the previous sections, it is convenient to work with another chiral superfield S, which is invariant under a shift symmetry

S −→ S− icα (4)

by performing a field redefinition

X = eS. (5)

In this case the most general Kähler potential and superpotential are of the form

K = K(S + S̄),

W = κ−3aebS. (6)

Note that this field redefinition is not valid at the symmetric point X = 0 for the first case.

11. CASE 1: INFLATION NEAR THE SYMMETRIC POINT
11.1. Slow roll parameters
In this section we derive the conditions that lead to slow-roll inflation scenarios, where the start of inflation is near a local maximum
of the potential at X = 0. Since the superpotential has charge 2 under R-symmetry, one has 〈W〉 = 0 as long as R-symmetry
is preserved. Therefore, 〈W〉 can be regarded as the order parameter of R-symmetry breaking. On the other hand, the minimum
of the potential requires 〈W〉 6= 0 and broken R-symmetry. It is therefore attractive to assume that at earlier times R-symmetry
was a good symmetry, switching off dangerous corrections to the potential. As similar approach was followed in [27], where a
discrete R-symmetry is assumed. Instead, we assume a gauged R-symmetry which is spontaneously broken at the minimum of the
potential.

While the superpotential is uniquely fixed in eq. (2), the Kähler potential is only fixed to be of the form K(XX̄). We expand the
Kähler potential as follows

K(X, X̄) = κ−2XX̄ + κ−2 A(XX̄)2,

W(X) = κ−3 f Xb,

f (X) = 1, (1)

where A and f are constants. The gauge kinetic function is taken to be constant since it was shown that the coefficient β in front
of the logarithmic term in eq. (3) is fixed to be very small by anomaly cancellation conditions [16]. As far as the scalar potential is
concerned, the coefficient γ can be absorbed in other parameters of the theory. We therefore take γ = 1.

The scalar potential is given by

V = VF + VD, (2)

where

VF = κ−4 f 2(XX̄)b−1 eXX̄(1+AXX̄)

[
−3XX̄ +

(b + XX̄(1 + 2AXX̄))
2

1 + 4AXX̄

]
(3)

and

VD = κ−4 q2

2
[b + XX̄(1 + 2AXX̄)]

2 . (4)

The superpotential is not gauge invariant under the U(1) gauge symmetry. Instead it transforms as

W →We−iqbw . (5)

Therefore, the U(1) is a gauged R-symmetry which we will further denote as U(1)R. From WXkX
R = −rRκ2W, where kX

R = −iqX
is the Killing vector for the field X under the R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet-Iliopoulos contribution to the scalar
potential, and WX is short-hand for ∂W/∂X, we find

rR = iκ−2qb. (6)
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A consequence of the gauged R-symmetry is that the superpotential coupling b enters the D-term contribution of the scalar potential
as a constant Fayet-Iliopoulos contribution.9

Note that the scalar potential is only a function of the modulus of X and that the potential contains a Fayet-Iliopoulos contribu-
tion for b 6= 0. Moreover, its phase will be ‘eaten’ by the U(1) gauge boson upon a field redefinition of the gauge potential similarly
to the standard Higgs mechanism. After performing a change of field variables

X = ρeiθ , X̄ = ρe−iθ , (ρ ≥ 0) (7)

the scalar potential is a function of ρ,

κ4V = f 2ρ2(b−1)eρ2+Aρ4

(
−3ρ2 +

(
b + ρ2 + 2Aρ4)2

1 + 4Aρ2

)
+

q2

2

(
b + ρ2 + 2Aρ4

)2
. (8)

Since we assume that inflation starts near ρ = 0, we require that the potential eq. (8) has a local maximum at this point. It turns out
that the potential only allows for a local maximum at ρ = 0 when b = 1. For b < 1 the potential diverges when ρ goes to zero. For
1 < b < 1.5 the first derivative of the potential diverges, while for b = 1.5, one has V′(0) = 9

4 f 2 + 3
2 q2 > 0, and for b > 1.5, on has

V′′(0) > 0. We thus take b = 1 and the scalar potential reduces to

κ4V = f 2eρ2+Aρ4

(
−3ρ2 +

(
1 + ρ2 + 2Aρ4)2

1 + 4Aρ2

)
+

q2

2

(
1 + ρ2 + 2Aρ4

)2
. (9)

Note that in this case the the superpotential is linear W = f X, describing the sgoldstino (up to an additional low-energy con-
straint) [30]. Indeed, modulo a D-term contribution, the inflaton in this model is the superpartner of the goldstino. In fact, for q = 0
the inflaton reduces to the partner of the goldstino as in Minimal Inflation models [31]. The important difference however is that
this is a microscopic realisation of the identification of the inflaton with the sgoldstino, and that the so-called η-problem is avoided
(see discussion below).

The kinetic terms for the scalars can be written as10

Lkin = −gXX̄ ∂̂µX∂̂µX

= −gXX̄

[
∂µρ∂µρ + ρ2 (∂µθ + qAµ

)
(∂µθ + qAµ)

]
. (10)

It was already anticipated above that the phase θ plays the role of the longitudinal component of the gauge field Aµ, which acquires
a mass by a Brout-Englert-Higgs mechanism.

We now interpret the field ρ as the inflaton. It is important to emphasise that, in contrast with usual supersymmetric theories of
inflation where one necessarily has two scalar degrees of freedom resulting in multifield inflation [26], our class of models contains
only one scalar field ρ as the inflaton. In order to calculate the slow-roll parameters, one needs to work with the canonically
normalised field χ satisfying

dχ

dρ
=
√

2gXX̄ . (11)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1
κ2

d2V/dχ2

V
. (12)

Since we assume inflation to start near ρ = 0, we expand

ε = 4
(
−4A+x2

2+x2

)2
ρ2 +O(ρ4),

η = 2
(
−4A+x2

2+x2

)
+O(ρ2), (13)

where we defined q = f x. Notice that for ρ� 1 the ε parameter is very small, while the η parameter can be made small by carefully
tuning the parameter A. Any higher order corrections to the Kähler potential do not contribute to the leading contributions in the
expansion near ρ = 0 for η and ε. Such corrections can therefore be used to alter the potential near its minimum, at some point
X 6= 0 without influencing the slow-roll parameters.

9For other studies of inflation involving Fayet-Iliopoulos terms see for example [28], or [29] for more recent work. Moreover, our motivations have some overlap
with [27], where inflation is also assumed to start near an R-symmetric point at X = 0. However, this work uses a discrete R-symmetry which does not lead to Fayet-
Iliopoulos terms.

10The covariant derivative is defined as ∂̂µ X = ∂µ X− AµkX
R , where kX

R = −iqX is the Killing vector for the U(1) transformation eq. 1.
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A comment on the η-problem in Supergravity
A few words are now in order concerning the η-problem [32]. The η problem in N = 1 supergravity is often stated as follows (see
for example [33]): If, for instance, a theory with a single chiral multiplet with scalar component ϕ is taken, then the Kähler potential
can be expanded around a reference location ϕ = 0 as K = K(0) +Kϕϕ̄(0)ϕϕ̄ + . . . . The Lagrangian becomes

L = −∂µφ∂µφ̄− V(0)
(

1 + κ2φφ̄ + · · ·
)

, (14)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄, and the ellipses stand for extra terms in the expansion coming from
K and W. Following this argument, the mass mφ turns out to be proportional to the Hubble scale

m2
φ = κ2V(0) + . . . = 3H2 + . . . , (15)

and therefore

η =
m2

φ

3H2 = 1 + . . . . (16)

Or otherwise stated, this leading contribution of order 1 to the η-parameter has its origin from the fact that the F-term contribution
to the scalar potential contains an exponential factor eK : V = eXX̄+... [. . .] resulting in its second derivative VXX̄ = V[1 + . . .].

However, in our model the factor ’1’ drops out for the particular choice b = 1 in the superpotential11, resulting in an inflaton
mass m2

ρ which is determined by the next term A(XX̄)2 in the expansion of the Kähler potential,

m2
χ =

(
−4A + x2) κ−2 f 2 +O(ρ2),

H2 =
κ−2 f 2

6 (2 + x2) +O(ρ2). (17)

As a result, there are two ways to evade the η-problem:

• First, one can obtain a small η by having a small q� f , while A should be of orderO(10−1). In this case, the rôle of the gauge
symmetry is merely to constrain the form of the Kähler potential and the superpotential, and to provide a Higgs mechanism
that eliminates the extra scalar (phase) degree of freedom.

• Alternatively there could be a cancellation between q2 and 4A f 2.

Since A is the second term in the expansion of the Kähler potential eq. (1), it is natural to be of order O(10−1) and therefore
providing a solution to the η-problem.

Note that the mass of the inflaton given in eqs. (17) is only valid during inflation at small ρ. The mass of the inflaton at its VEV
will be affected by additional corrections that are needed to obtain in particular a vanishing value for the scalar potential at its
minimum [16].

The upper bound on the tensor-to-scalar ratio
Before moving on to the next section, let us focus on the approximation at ρ� 1 where the perturbative expansion of the slow-roll
parameters in eqs. (13) is valid, and assume that the horizon exit occurs at the field value ρ∗ very close to the maximum ρ = 0. In
this approximation, eqs. (13) become

ε(ρ) ≈ εpert(ρ) = |η∗|2ρ2, η(ρ) ≈ η∗, (18)

where the asterisk refers to the value of parameters evaluated at the horizon exit.
To discuss the upper bound on the tensor-to-scalar ratio, it is convenient to divide the region [ρ = 0, ρend] into two regions:

one is [0, ρp], where the approximation 18 is valid, and the other is the rest [ρp, ρend]. Here ρend means the inflation end. Note that
ρp < ρend because the approximation 18 breaks down before the end of inflation where ε(ρend) = 1 or |η(ρend)| = 1. In terms of
this division, the number of e-folds from the horizon exit to the end of inflation can be approximated by

NCMB ' Npert(ρ∗, ρp) + κ
∫ χend

χp

dχ√
2ε(χ)

, (19)

where we introduced

Npert(ρ1, ρ2) = κ
∫ χ2

χ1

dχ√
2εpert(χ)

=
1
|η∗|

ln
(

ρ2
ρ1

)
. (20)

11Note that in hybrid inflation models the η-problem is also evaded by a somewhat similar way, but these models generally include several scalar fields (and
superfields) besides the inflaton (see e.g. [34]).
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Here χ is the canonically normalised field defined by eq. (11). Let us next focus on the region [ρp, ρend]. It is natural to expect the
following inequality

κ
∫ χend

χp

dχ√
2ε(χ)

<∼ κ
∫ χend

χp

dχ√
2εpert(χ)

. (21)

This is based on the following observation. The right hand side describes a hypothetical situation, as if the slow-roll condition
were valid throughout the inflation until its end. But since in the actual inflation the slow-roll condition breaks down in the region
[ρp, ρend], the actual number of e-folds in this region will be smaller than that in the hypothetical situation. Adding Npert(ρ∗, ρp) to
the both hand sides of 21 and using 19, we find

NCMB <∼
1
|η∗|

ln
(

ρend
ρ∗

)
. (22)

Using 18 and the definition of the tensor-to-scalar ratio r = 16ε∗, we obtain the upper bound:

r <∼ 16
(
|η∗|ρende−|η∗ |NCMB

)2
. (23)

To satisfy CMB data, let us choose η = −0.02 and NCMB ≈ 50. Assuming ρend <∼ 1/2, we obtain the upper bound r <∼ 10−4. Note
that this is a little bit lower than the Lyth bound [35] for small field inflation, r <∼ 10−3. From the upper bound on r, we can also
find the upper bound on the Hubble parameter as follows. In general, the power spectrum amplitude As is related to the Hubble
parameter at horizon exit H∗ by

As =
2κ2H2

∗
π2r

. (24)

Combining this with the upper bound r <∼ 10−4 and the value As = 2.2× 10−9 by CMB data, we find the upper bound on the
Hubble parameter H∗ <∼ 109 TeV.

In Ref. [16], we will also find the lower bound r >∼ 10−9 (equivalently H∗ >∼ 107 TeV), based on an model-independent argu-
ment. This bound can be lowered at the cost of naturalness between parameters in the potential.
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M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451;
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